Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1179291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448577

RESUMEN

Biocrusts are ecosystem engineers in drylands and structure the landscape through their ecohydrological effects. They regulate soil infiltration and evaporation but also surface water redistribution, providing important resources for vascular vegetation. Spatially-explicit ecohydrological models are useful tools to explore such ecohydrological mechanisms, but biocrusts have rarely been included in them. We contribute to closing this gap and assess how biocrusts shape spatio-temporal water fluxes and availability in a dryland landscape and how landscape hydrology is affected by climate-change induced shifts in the biocrust community. We extended the spatially-explicit, process-based ecohydrological dryland model EcoHyD by a biocrust layer which modifies water in- and outputs from the soil and affects surface runoff. The model was parameterized for a dryland hillslope in South-East Spain using field and literature data. We assessed the effect of biocrusts on landscape-scale soil moisture distribution, plant-available water and the hydrological processes behind it. To quantify the biocrust effects, we ran the model with and without biocrusts for a wet and dry year. Finally, we compared the effect of incipient and well-developed cyanobacteria- and lichen biocrusts on surface hydrology to evaluate possible paths forward if biocrust communities change due to climate change. Our model reproduced the runoff source-sink patterns typical of the landscape. The spatial differentiation of soil moisture in deeper layers matched the observed distribution of vascular vegetation. Biocrusts in the model led to higher water availability overall and in vegetated areas of the landscape and that this positive effect in part also held for a dry year. Compared to bare soil and incipient biocrusts, well-developed biocrusts protected the soil from evaporation thus preserving soil moisture despite lower infiltration while at the same time redistributing water toward downhill vegetation. Biocrust cover is vital for water redistribution and plant-available water but potential changes of biocrust composition and cover can reduce their ability of being a water source and sustaining dryland vegetation. The process-based model used in this study is a promising tool to further quantify and assess long-term scenarios of climate change and how it affects ecohydrological feedbacks that shape and stabilize dryland landscapes.

2.
Ecol Evol ; 12(3): e8715, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342616

RESUMEN

Changing climatic conditions and unsustainable land use are major threats to savannas worldwide. Historically, many African savannas were used intensively for livestock grazing, which contributed to widespread patterns of bush encroachment across savanna systems. To reverse bush encroachment, it has been proposed to change the cattle-dominated land use to one dominated by comparatively specialized browsers and usually native herbivores. However, the consequences for ecosystem properties and processes remain largely unclear. We used the ecohydrological, spatially explicit model EcoHyD to assess the impacts of two contrasting, herbivore land-use strategies on a Namibian savanna: grazer- versus browser-dominated herbivore communities. We varied the densities of grazers and browsers and determined the resulting composition and diversity of the plant community, total vegetation cover, soil moisture, and water use by plants. Our results showed that plant types that are less palatable to herbivores were best adapted to grazing or browsing animals in all simulated densities. Also, plant types that had a competitive advantage under limited water availability were among the dominant ones irrespective of land-use scenario. Overall, the results were in line with our expectations: under high grazer densities, we found heavy bush encroachment and the loss of the perennial grass matrix. Importantly, regardless of the density of browsers, grass cover and plant functional diversity were significantly higher in browsing scenarios. Browsing herbivores increased grass cover, and the higher total cover in turn improved water uptake by plants overall. We concluded that, in contrast to grazing-dominated land-use strategies, land-use strategies dominated by browsing herbivores, even at high herbivore densities, sustain diverse vegetation communities with high cover of perennial grasses, resulting in lower erosion risk and bolstering ecosystem services.

3.
Environ Microbiol ; 23(10): 5934-5945, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33538387

RESUMEN

Priming, an inducible stress defence strategy that prepares an organism for an impending stress event, is common in microbes and has been studied mostly in isolated organisms or populations. How the benefits of priming change in the microbial community context and, vice versa, whether priming influences competition between organisms, remain largely unknown. In this study, we grew different isolates of soil fungi that experienced heat stress in isolation and pairwise competition experiments and assessed colony extension rate as a measure of fitness under priming and non-priming conditions. Based on this data, we developed a cellular automaton model simulating the growth of the ascomycete Chaetomium angustispirale competing against other fungi and systematically varied fungal response traits to explain similarities and differences observed in the experimental data. We showed that competition changes the priming benefit compared with isolated growth and that it can even be reversed depending on the competitor's traits such as growth rate, primeability and stress susceptibility. With this study, we transfer insights on priming from studies in isolation to competition between species. This is an important step towards understanding the role of inducible defences in microbial community assembly and composition.


Asunto(s)
Hongos , Microbiología del Suelo , Suelo
4.
J Environ Manage ; 281: 111875, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33378737

RESUMEN

Alpine grasslands on the Qinghai-Tibetan Plateau are sensitive and vulnerable to climate change and human activities. Climate warming and overgrazing have already caused degradation in a large fraction of alpine grasslands on this plateau. However, it remains unclear how human activities (mainly livestock grazing) regulates vegetation dynamics under climate change. Here, alpine grassland productivity (substituted with the normalized difference vegetation index, NDVI) is hypothesized to vary in a nonlinear trajectory to follow climate fluctuations and human disturbances. With generalized additive mixed modelling (GAMM) and residual-trend (RESTREND) analysis together, both magnitude and direction of climatic (in terms of temperature, precipitation, and radiation) and anthropogenic impacts on NDVI variation were examined across alpine meadows, steppes, and desert-steppes on the Qinghai-Tibetan Plateau. The results revealed that accelerating warming and greening, respectively, took place in 76.2% and 78.8% of alpine grasslands on the Qinghai-Tibetan Plateau. The relative importance of temperature, precipitation, and radiation impacts was comparable, between 20.4% and 24.8%, and combined to explain 66.2% of NDVI variance at the pixel scale. The human influence was strengthening and weakening, respectively, in 15.5% and 14.3% of grassland pixels, being slightly larger than any sole climatic variable across the entire plateau. Anthropogenic and climatic factors can be in opposite ways to affect alpine grasslands, even within the same grassland type, likely regulated by plant community assembly and species functional traits. Therefore, the underlying mechanisms of how plant functional diversity regulates nonlinear ecosystem response to climatic and anthropogenic stresses should be carefully explored in the future.


Asunto(s)
Ecosistema , Pradera , Animales , Cambio Climático , Humanos , Dinámicas no Lineales , Tibet
5.
PLoS One ; 15(11): e0231122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33232338

RESUMEN

Grassland biodiversity is vulnerable to land use change. How to best manage semi-natural grasslands for maintaining biodiversity is still unclear in many cases because land-use processes may depend on environmental conditions and the indirect effects of land-use on biodiversity mediated by altered abiotic and biotic factors are rarely considered. Here we evaluate the relative importance of the direct and indirect effects of grazing intensity on plant communities along an elevational gradient on a large topographic scale in the Eastern Carpathians in Ukraine. We sampled for two years 31 semi-natural grasslands exposed to cattle grazing. Within each grassland site we measured plant community properties such as the number of species, functional groups, and the proportion of species undesirable for grazing. In addition, we recorded cattle density (as a proxy for grazing intensity), soil properties (bare soil exposure, soil organic carbon, and soil pH) and densities of soil decomposers (earthworms and soil microorganisms). We used structural equation modelling to explore the direct and indirect effects of grazing intensity on plant communities along the elevation gradient. We found that cattle density decreased plant species and functional diversity but increased the proportion of undesirable species. Some of these effects were directly linked to grazing intensity (i.e., species richness), while others (i.e., functional diversity and proportion of undesirable species) were mediated via bare soil exposure. Although grazing intensity decreased with elevation, the effects of grazing on the plant community did not change along the elevation gradient. Generally, elevation had a strong positive direct effect on plant species richness as well as a negative indirect effect, mediated via altered soil acidity and decreased decomposer density. Our results indicate that plant diversity and composition are controlled by the complex interplay among grazing intensity and changing environmental conditions along an elevation gradient. Furthermore, we found lower soil pH, organic carbon and decomposer density with elevation, indicating that the effects of grazing on soil and related ecosystem functions and services in semi-natural grasslands may be more pronounced with elevation. This demonstrates that we need to account for environmental gradients when attempting to generalize effects of land-use intensity on biodiversity.


Asunto(s)
Agricultura/métodos , Herbivoria/fisiología , Plantas/clasificación , Animales , Biodiversidad , Bovinos , Pradera , Concentración de Iones de Hidrógeno , Modelos Teóricos , Desarrollo de la Planta , Suelo/química , Ucrania
6.
Nat Ecol Evol ; 4(3): 393-405, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094542

RESUMEN

The continuing loss of global biodiversity has raised questions about the risk that species extinctions pose for the functioning of natural ecosystems and the services that they provide for human wellbeing. There is consensus that, on single trophic levels, biodiversity sustains functions; however, to understand the full range of biodiversity effects, a holistic and multitrophic perspective is needed. Here, we apply methods from ecosystem ecology that quantify the structure and dynamics of the trophic network using ecosystem energetics to data from a large grassland biodiversity experiment. We show that higher plant diversity leads to more energy stored, greater energy flow and higher community-energy-use efficiency across the entire trophic network. These effects of biodiversity on energy dynamics were not restricted to only plants but were also expressed by other trophic groups and, to a similar degree, in aboveground and belowground parts of the ecosystem, even though plants are by far the dominating group in the system. The positive effects of biodiversity on one trophic level were not counteracted by the negative effects on adjacent levels. Trophic levels jointly increased the performance of the community, indicating ecosystem-wide multitrophic complementarity, which is potentially an important prerequisite for the provisioning of ecosystem services.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Ecología , Humanos , Plantas
7.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31295343

RESUMEN

Organisms are prone to different stressors and have evolved various defense mechanisms. One such defense mechanism is priming, where a mild preceding stress prepares the organism toward an improved stress response. This improved response can strongly vary, and primed organisms have been found to respond with one of three response strategies: a shorter delay to stress, a faster buildup of their response or a more intense response. However, a universal comparative assessment, which response is superior under a given environmental setting, is missing. We investigate the benefits of the three improved responses for microorganisms with an ordinary differential equation model, simulating the impact of an external stress on a microbial population that is either naïve or primed. We systematically assess the resulting population performance for different costs associated with priming and stress conditions. Our results show that independent of stress type and priming costs, the stronger primed response is most beneficial for longer stress phases, while the faster and earlier responses increase population performance and survival probability under short stresses. Competition increases priming benefits and promotes the early stress response. This dependence on the ecological context highlights the importance of including primed response strategies into microbial stress ecology.


Asunto(s)
Adaptación Fisiológica/fisiología , Fenómenos Fisiológicos Bacterianos , Estrés Fisiológico/fisiología , Bacterias/metabolismo , Humanos , Modelos Teóricos , Dinámica Poblacional
8.
Sci Rep ; 9(1): 3768, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842586

RESUMEN

Leaf water potential regulation is a key process in whole plant and ecosystem functioning. While low water potentials induced by open stomata may initially be associated with greater CO2 supply and a higher water flux from the rhizosphere to the canopy, they also inhibit cell growth, photosynthesis and ultimately water supply. Here, we show that plants regulate their leaf water potential in an optimal manner under given constraints using a simple leaf water status regulation model and data from a global dryland leaf water potential database. Model predictions agree strongly with observations across locations and species and are further supported by experimental data. Leaf water potentials non-linearly decline with soil water potential, underlining the shift from maximizing water supply to avoiding stress with declining water availability. Our results suggest that optimal regulation of the leaf water status under varying water supply and stress tolerance is a ubiquitous property of plants in drylands. The proposed model moreover provides a novel quantitative framework describing how plants respond to short- and long-term changes in water availability and may help elaborating models of plant and ecosystem functioning.


Asunto(s)
Hojas de la Planta/química , Agua/análisis , Dióxido de Carbono/química , Fotosíntesis , Desarrollo de la Planta , Hojas de la Planta/crecimiento & desarrollo
9.
Trends Plant Sci ; 24(3): 191-194, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30797424

RESUMEN

The iso/anisohydry concept characterizes plants according to their water status regulation. Coexisting definitions and misconceptions have recently led to considerable criticism. We discuss here reasons for the misconceptions, and propose a robust definition of iso/anisohydry using the leaf turgor loss point to integrate the complex interplay of plant hydraulic traits.


Asunto(s)
Hojas de la Planta , Estomas de Plantas , Plantas , Agua
10.
J Environ Manage ; 231: 635-645, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30390448

RESUMEN

The biodiversity-productivity relationship is critical for better predicting ecosystem responses to climate change and human disturbance. However, it remains unclear about the effects of climate change, land use shifts, plant diversity, and their interactions on productivity partitioning above- and below-ground components in alpine grasslands on the Tibetan Plateau. To answer this question, we conducted field surveys at 33 grazed vs. fenced paired sites that are distributed across the alpine meadow, steppe, and desert-steppe zones on the northern Tibetan Plateau in early August of 2010-2013. Generalized additive models (GAMs) showed that aboveground net primary productivity (ANPP) linearly increased with growing season precipitation (GSP) while belowground net primary productivity (BNPP) decreased with growing season temperature (GST). Compared to grazed sites, short-term fencing did not alter the patterns of ANPP along climatic gradients but tended to decrease BNPP at moderate precipitation levels of 200 mm < GSP <450 mm. We also found that ANPP and BNPP linearly increased with species richness, ANPP decreased with Shannon diversity index, and BNPP did not correlate with the Shannon diversity index. Fencing did not alter the relationships between productivity components and plant diversity indices. Generalized additive mixed models furtherly confirmed that the interaction of localized plant diversity and climatic condition nonlinearly regulated productivity partitioning of alpine grasslands in this area. Finally, structural equation models (SEMs) revealed the direction and strength of causal links between biotic and abiotic variables within alpine grassland ecosystems. ANPP was controlled directly by GSP (0.53) and indirectly via species richness (0.41) and Shannon index (-0.12). In contrast, BNPP was influenced directly by GST (-0.43) and indirectly by GSP via species richness (0.05) and Shannon index (-0.02). Therefore, we recommend using a joint approach of GAMs and SEMs for better understanding mechanisms behind the relationship between biodiversity and ecosystem function under climate change and human disturbance.


Asunto(s)
Ecosistema , Pradera , Biomasa , Cambio Climático , Humanos , Lluvia , Tibet
11.
PeerJ ; 6: e5904, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30479893

RESUMEN

BACKGROUND: Biocrusts, communities dominated by mosses, lichens, cyanobacteria, and other microorganisms, largely affect the carbon cycle of drylands. As poikilohydric organisms, their activity time is often limited to short hydration events. The photosynthetic and respiratory response of biocrusts to hydration events is not only determined by the overall amount of available water, but also by the frequency and size of individual rainfall pulses. METHODS: We experimentally assessed the carbon exchange of a biocrust community dominated by the lichen Diploschistes diacapsis in central Spain. We compared the effect of two simulated precipitation patterns providing the same overall amount of water, but with different pulse sizes and frequency (high frequency: five mm/day vs. low frequency: 15 mm/3 days), on net/gross photosynthesis and dark respiration. RESULTS: Radiation and soil temperature, together with the watering treatment, affected the rates of net and gross photosynthesis, as well as dark respiration. On average, the low frequency treatment showed a 46% ± 3% (mean ± 1 SE) lower rate of net photosynthesis, a 13% ± 7% lower rate of dark respiration, and a 24% ± 8% lower rate of gross photosynthesis. However, on the days when samples of both treatments were watered, no differences between their carbon fluxes were observed. The carbon flux response of D. diacapsis was modulated by the environmental conditions and was particularly dependent on the antecedent soil moisture. DISCUSSION: In line with other studies, we found a synergetic effect of individual pulse size, frequency, environmental conditions, and antecedent moisture on the carbon exchange fluxes of biocrusts. However, most studies on this subject were conducted in summer and they obtained results different from ours, so we conclude that there is a need for long-term experiments of manipulated precipitation impacts on the carbon exchange of biocrusts. This will enable a more complete assessment of the impacts of climate change-induced alterations in precipitation patterns on biocrust communities.

12.
Ecol Evol ; 8(12): 6369-6380, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29988431

RESUMEN

A global ecological restoration agenda has led to ambitious programs in environmental policy to mitigate declines in biodiversity and ecosystem services. Current restoration programs can incompletely return desired ecosystem service levels, while resilience of restored ecosystems to future threats is unknown. It is therefore essential to advance understanding and better utilize knowledge from ecological literature in restoration approaches. We identified an incomplete linkage between global change ecology, ecosystem function research, and restoration ecology. This gap impedes a full understanding of the interactive effects of changing environmental factors on the long-term provision of ecosystem functions and a quantification of trade-offs and synergies among multiple services. Approaches that account for the effects of multiple changing factors on the composition of plant traits and their direct and indirect impact on the provision of ecosystem functions and services can close this gap. However, studies on this multilayered relationship are currently missing. We therefore propose an integrated restoration agenda complementing trait-based empirical studies with simulation modeling. We introduce an ongoing case study to demonstrate how this framework could allow systematic assessment of the impacts of interacting environmental factors on long-term service provisioning. Our proposed agenda will benefit restoration programs by suggesting plant species compositions with specific traits that maximize the supply of multiple ecosystem services in the long term. Once the suggested compositions have been implemented in actual restoration projects, these assemblages should be monitored to assess whether they are resilient as well as to improve model parameterization. Additionally, the integration of empirical and simulation modeling research can improve global outcomes by raising the awareness of which restoration goals can be achieved, due to the quantification of trade-offs and synergies among ecosystem services under a wide range of environmental conditions.

13.
J Theor Biol ; 437: 92-100, 2018 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-29054812

RESUMEN

Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability.


Asunto(s)
Cambio Climático , Ecosistema , Pradera , Lluvia , África , Algoritmos , Simulación por Computador , Incendios , Modelos Teóricos , Poaceae/crecimiento & desarrollo , Dinámica Poblacional , Procesos Estocásticos , Factores de Tiempo , Árboles/crecimiento & desarrollo
14.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29106521

RESUMEN

Flower nectar is a sugar-rich ephemeral habitat for microorganisms. Nectar-borne yeasts are part of the microbial community and can affect pollination by changing nectar chemistry, attractiveness to pollinators or flower temperature if yeast population densities are high. Pollinators act as dispersal agents in this system; however, pollination events lead potentially to shrinking nectar yeast populations. We here examine how sufficiently high cell densities of nectar yeast can develop in a flower. In laboratory experiments, we determined the remaining fraction of nectar yeast cells after nectar removal, and used honeybees to determine the number of transmitted yeast cells from one flower to the next. The results of these experiments directly fed into a simulation model providing an insight into movement and colonization ecology of nectar yeasts. We found that cell densities only reached an ecologically relevant size for an intermediate pollination probability. Too few pollination events reduce yeast inoculation rate and too many reduce yeast population size strongly. In addition, nectar yeasts need a trait combination of at least an intermediate growth rate and an intermediate remaining fraction to compensate for highly frequent decimations. Our results can be used to predict nectar yeast dispersal, growth and consequently their ecological effects.


Asunto(s)
Candida/crecimiento & desarrollo , Flores/microbiología , Metschnikowia/crecimiento & desarrollo , Néctar de las Plantas/análisis , Animales , Abejas/microbiología , Candida/aislamiento & purificación , Ecosistema , Metschnikowia/aislamiento & purificación , Polinización/fisiología
15.
Sci Rep ; 7(1): 15202, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123187

RESUMEN

Resilience is an important aspect of the non-linear restoration of disturbed ecosystems. Fenced grassland patches on the northern Tibetan Plateau can be used to examine the resistance and resilience of degraded alpine grasslands to grazing and to a changing climate. To examine the non-linearity of restoration, we used moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) as a proxy for productivity during a ten-year restoration by fencing. Degraded alpine grasslands exhibited three restoration trajectories: an equilibrium in meadows, a non-linear increase across steppes, and an abrupt impulse in desert-steppes following a slight increase in productivity. Combined with weather conditions, the ten-year grazing exclusion has successfully enhanced the NDVI on the most degraded steppes, but did not do so efficiently on either meadows or desert-steppes. Warming favors the NDVI enhancement of degraded meadows, but higher temperatures limited the restoration of degraded steppes and desert-steppes. Precipitation is necessary to restore degraded alpine grasslands, but more precipitation might be useless for meadows due to lower temperatures and for desert-steppes due to limitations caused by the small species pool. We suggest that detailed field observations of community compositional changes are necessary to better understand the mechanisms behind such non-linear ecological restorations.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Pradera , Herbivoria , Clima , Tibet
16.
Sci Rep ; 7(1): 12923, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018258

RESUMEN

The distribution of rainfed agriculture, which accounts for approximately ¾ of global croplands, is expected to respond to climate change and human population growth and these responses may be especially pronounced in water limited areas. Because the environmental conditions that support rainfed agriculture are determined by climate, weather, and soil conditions that affect overall and transient water availability, predicting this response has proven difficult, especially in temperate regions that support much of the world's agriculture. Here, we show that suitability to support rainfed agriculture in temperate dryland climates can be effectively represented by just two daily environmental variables: moist soils with warm conditions increase suitability while extreme high temperatures decrease suitability. 21st century projections based on daily ecohydrological modeling of downscaled climate forecasts indicate overall increases in the area suitable for rainfed agriculture in temperate dryland regions, especially at high latitudes. The regional exception to this trend was Europe, where suitability in temperate dryland portions will decline substantially. These results clarify how rising temperatures interact with other key drivers of moisture availability to determine the sustainability of rainfed agriculture and help policymakers, resource managers, and the agriculture industry anticipate shifts in areas suitable for rainfed cultivation.


Asunto(s)
Agricultura/métodos , Ecosistema , Humedad , Lluvia , Suelo , Temperatura , Cambio Climático
17.
Nat Commun ; 8: 14196, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139649

RESUMEN

Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.

18.
Glob Chang Biol ; 23(7): 2743-2754, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27976449

RESUMEN

Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water-limited ecosystems.


Asunto(s)
Cambio Climático , Sequías , Ecología , Ecosistema , Lluvia , Suelo/química , Agua
19.
Environ Sci Technol ; 50(16): 8697-704, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27434742

RESUMEN

Information on human indoor exposure is necessary to assess the potential risk to individuals from many chemicals of interest. Dynamic indoor and human physicologically based pharmacokinetic (PBPK) models of the distribution of nonionizing, organic chemical concentrations in indoor environments resulting in delivered tissue doses are developed, described and tested. The Indoor model successfully reproduced independently measured, reported time-dependent air concentrations of chloroform released during showering and of 2-butyoxyethanol following use of a volatile surface cleaner. The Indoor model predictions were also comparable to those from a higher tier consumer model (ConsExpo 4.1) for the surface cleaner scenario. The PBPK model successful reproduced observed chloroform exhaled air concentrations resulting from an inhalation exposure. Fugacity based modeling provided a seamless description of the partitioning, fluxes, accumulation and release of the chemical in indoor media and tissues of the exposed subject. This has the potential to assist in health risk assessments, provided that appropriate physical/chemical property, usage characteristics, and toxicological information are available.


Asunto(s)
Contaminación del Aire Interior/análisis , Exposición por Inhalación , Compuestos Orgánicos/análisis , Cloroformo/análisis , Humanos , Modelos Teóricos , Medición de Riesgo
20.
FEMS Microbiol Ecol ; 91(5)2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25873462

RESUMEN

Microbes in nature are exposed to complex environmental stressors which challenge their functioning or survival. Priming is the improved reaction of an organism to an environmental stressor following a preceding, often milder stress event. This phenomenon, also known as cross-protection, predictive response strategy or acquired stress resistance, is becoming an increasingly well-established research topic in microbiology, which has so far been examined from the perspective of a single organism or population. However, microbes in nature occur as part of communities; thus it is timely to highlight the need to also include this level beyond the individual species in studies of priming effects. We here introduce a conceptual framework for such studies at the level of the microbial assemblage and also chart a way forward for empirical and theoretical study. We illustrate some of the elements of our framework with a simple simulation model. Given the dynamic habitat of many microbes, incorporating priming is important for a more complete understanding of microbial community responses to stress.


Asunto(s)
Hongos/fisiología , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Modelos Teóricos , Estrés Fisiológico/fisiología , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...